organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Huan-Xia Zhang, Da-Bin Qin,* Lin-Hai Jing and Shao-Jin Gu

School of Chemistry and Chemical Industry, China West Normal University, Nanchong 637002, People's Republic of China

Correspondence e-mail: zhanghuanxia@126.com

Key indicators

Single-crystal X-ray study T = 153 K Mean σ (C–C) = 0.004 Å Disorder in solvent or counterion R factor = 0.036 wR factor = 0.099 Data-to-parameter ratio = 16.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-Benzyl-3-[4-(dibromomethyl)benzyl]imidazolium hexafluorophosphate

In the crystal structure of the title compound, $C_{18}H_{17}Br_2N_2^{+}$.- PF_6^{-} , four F atoms of the hexafluorophosphate anion are disordered. The hexafluorophosphate ions are linked to 1-benzyl-3-[4-(dibromomethyl)benzyl]imidazolium cations by $C-H\cdots$ F hydrogen bonds, which may be effective in the stabilization of the crystal structure.

Comment

Numerous flexible and rigid *N*-heterocyclic carbene precursors have been synthesized and studied. They have attracted considerable attention due to their diverse coordination capabilities and the important catalytic properties of their metal complexes (Herrmann, 2002; Herrmann & Kocher, 1997). We here report the crystal structure of the title compound, (I).

In the structure of (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen *et al.*, 1987). Rings *A* (atoms C1–C6), *B* (N1/N2/C8–C10) and *C* (C12–C17) are, of course, planar; the dihedral angles between them are A/B = 68.94 (3)°, A/C = 29.64 (3)° and B/C = 64.76 (3)°.

As can be seen from the packing diagram (Fig. 2), the hexafluorophosphate molecules are linked to 1-benzyl-3-[4-(dibromomethyl)benzyl]imidazolium by $C-H\cdots$ F hydrogen bonds (Table 1), which may be effective in the stabilization of the crystal structure. Dipole–dipole and van der Waals interactions are also effective in the molecular packing.

Experimental

The title compound was synthesized by the reaction of 1-(bromomethyl)-4-(dibromomethyl)benzene with 1-benzyl-1*H*-imidazole in tetrahydrofuran at 350 K, according to a literature method (Lee *et al.*, 2004). The resulting white deposit was dissolved in methanol (20 ml) and then ammonium hexafluorophosphate (2 g) was added. The white solid was filtered off, washed with diethyl ether and air-dried. White single crystals suitable for X-ray diffraction were obtained by recrystallization from absolute acetonitrile and diethyl ether (1:2).

© 2006 International Union of Crystallography All rights reserved Received 20 September 2006

Accepted 22 September 2006

Figure 1

The asymmetric unit of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Both disorder components are shown.

Z = 4

 $D_x = 1.865 \text{ Mg m}^{-3}$

 $0.51 \times 0.47 \times 0.44~\text{mm}$

Mo $K\alpha$ radiation

 $\mu = 4.16 \text{ mm}^{-1}$

T = 153 (2) K

Block, white

Crystal data

 $C_{18}H_{17}Br_2N_2^{+} \cdot PF_6^{-}$ $M_r = 566.13$ Monoclinic, $P2_1/c$ a = 9.9544 (2) Å b = 14.2182 (3) Å c = 14.2552 (3) Å $\beta = 91.963$ (1)° V = 2016.41 (7) Å³

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (Blessing, 1995) $T_{\min} = 0.138, T_{\max} = 0.160$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.099$ S = 1.014610 reflections 282 parameters H-atom parameters constrained 19223 measured reflections 4610 independent reflections 4042 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$ $\theta_{max} = 27.5^{\circ}$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0546P)^{2} + 1.96P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.84 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.74 \text{ e} \text{ Å}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.0095 (7)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C8-H8···F2 ⁱ	0.95	2.52	3.016 (4)	113
C9−H9···F3 ⁱⁱ	0.95	2.51	3.297 (5)	141
$C11 - H11A \cdot \cdot \cdot F6^{iii}$	0.99	2.38	3.288 (4)	152
$C18-H18\cdots F6^{iv}$	1.00	2.47	3.273 (4)	137

Symmetry codes: (i) x, y, z - 1; (ii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (iii) -x + 1, -y + 1, -z + 1; (iv) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Four F atoms of the hexafluorophosphate were found to be disordered, with refined site occupancies of 0.851 (4) and 0.149 (4). H

Figure 2

A packing diagram of (I). Hydrogen bonds are shown as dashed lines. Both disorder components are shown.

atoms were positioned geometrically, with C-H = 0.95, 1.00 and 0.99 Å for aromatic, methine and methylene H atoms, respectively, and constrained to ride on their parent atoms, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$.

Data collection: *RAPID-AUTO* (Rigaku/MSC, 2004); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to Chengdu Organic Institute of Chinese Academy for carrying out the X-ray work.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Herrmann, W. A. (2002). Angew. Chem. Int. Ed. Engl. 41, 1290-1309.
- Herrmann, W. A. & Kocher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162-
- 2187. Lee, H. M., Lu, C. Y., Chen, C. Y., Chen, W. L., Lin, H. C., Chiu, P. L. & Cheng, P. Y. (2004). *Tetrahedron*, **60**, 5807–5825.
- Rigaku/MSC (2004). *RAPID-AUTO*. Version 3.0. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.